Folds in Haskell

Mark P Jones
Portland State University

Folds!

@ A list xs can be built by applying the (:) and []
operators to a sequence of values:

XS =Xy i X i X3 Xt Xt [

@ Suppose that we are able to replace every use of
(:) with a binary operator (®), and the final []
with a value n:

XS=X@X, DX3 DX D ... DX DN

@ The resulting value is called fold (®) n xs

@ Many useful functions on lists can be described in

this way.
2

Graphically:

| |
e - |I:> €
€
/

] .

f = foldr (®) n

e, e3/

Example: sum

]
e - |::> €
o [7])
/

/

sum = foldr (+) 0

Example: product

product = foldr (*) 1

Example: length

consxys=1+ys

]

e, E e, cons

/ /

€ & n

length = foldr (\x ys-> 1 +ys) 0

Example: map

cons x ys = f x:ys

]

e, E e, cons

/ /

& €3

map f = foldr (\x ys -> f x : ys) []

Example: filter

Cons X ys
]
then x:ys

e, - :> e cons| elseys

e, E e, cons

/ /

& €3

filter p = foldr (\x ys -> if p x then x:ys else ys) []

8

Formal Definition:

foldr i (@>b->b)->b->[a]->b
foldr cons nil [] = nil
foldr cons nil (x:xs) = cons x (foldr cons nil xs)

Applications:

sum = foldr (+) 0

product = foldr (*) 1

length =foldr (\x ys->1+ys)0
map f = foldr (\x ys -> f x : ys) []
filter p = foldr c []

where c x ys = if p x then x:ys else ys

XS ++ ys = foldr (:) ys xs
concat = foldr (++) []
and = foldr (&&) True
or = foldr (]|) False

10

Patterns of Computation:

@ foldr captures a common pattern of computations
over lists

@ As such, it's a very useful function in practice to
include in the Prelude

@ Even from a theoretical perspective, it's very
useful because it makes a deep connection
between functions that might otherwise seem
very different ...

@ From the perspective of lawful programming, one
law about foldr can be used to reason about
many other functions

11

A law about foldr:

@ If (®) is an associative operator with unit n, then
foldr (®) n xs @ foldr (®) n ys
= foldr (®) n (xs ++ ys)

®(X®.0x®ND(Y,®..0Y;®n)
=(%@.OXPY,®..0Y;®n)

@ All of the following laws are special cases:
sumxs + sumys = sum (xs ++ ys)
product xs * product ys = product (xs ++ ys)
concat xss ++ concat yss = concat (xss ++ yss)
and xs && and ys = and (xs ++ ys)
or xs || or ys = or (xs ++ ys)
12

foldl:

@ There is a companion function to foldr

called foldl:
foldl (b->a->b)->b->[a]->b
foldl s n [] =n

foldl s n (x:xs) = foldl s (s n x) xs

@ For example:
foldl s n [ey, e,, e5]

S(s(sney)e)e;
(s &) s &) s e

13

foldr vs foldl:

cons snoc
e, cons snoc €

e, cons snoc e,

e ‘ nil ‘ ‘ nil ‘ e

foldr foldl

14

Uses for foldl:

@ Many of the functions defined using foldr can be
defined using foldl:
sum = foldl (+) 0
product = foldl (*) 1

@ There are also some functions that are more
easily defined using foldl:
reverse = foldl (\ys x -> x:ys) []

@ When should you use foldr and when should you
use foldl? When should you use explicit recursion
instead?

15

foldrl and foldI1:

@ Variants of foldr and foldl that work on non-

empty lists:
foldrl w(@a->a->a)->[a]l->a
foldrl f [x] =X
foldrl f (x:xs) = f x (foldr1 f xs)
foldl1 w(@->a->a)->[a]l->a
foldl1 f (x:xs) = foldl f x xs
@ Notice:

= No case for empty list
= No argument to replace empty list
= Less general type (only one type variable)

16

Uses of foldl1, foldr1:

From the prelude:
minimum = foldl1 min
maximum = foldl1l max

Not in the prelude:
commaSep = foldrl (\st->s++"," ++ t)

17

Example: Grouping

groupn = takeWhile (not.null)
map (take n)
iterate (drop n)

["abC", "dEf", "g"]

["abC", "def", llgll nnoonnnn]

7 I 7 I

["adeEfg", "dEfg", "g", LU LTI 111}]

I I I

"abcdefg" 18

Example: Adding Commas
group n = reverse
. foldrl (\xs ys -> xs++","++ys)
. group 3
. reverse “1,234,567"
“765,432,1"
["765", ll432ll, Illll]
“7654321"

"1234567" 19

Example: transpose

transpose : [[all -> [[all
transpose [] =[]
transpose ([] : xss) = transpose xss
transpose ((x:xs) : xss)
= (x : [h | (h:t) <- xss])
: transpose (xs : [t] (h:t) <- xss])

Example:

transpose [[1,2,3],[4,5,6]] = [[1,4],[2,5],[3,6]]

20

Example: say

... continued:

Say> putStr (say "hello") say = ('\n':)
. unlines
q 4 EEEEE L L 000 . map (foldrl (\xs ys->xs++" "++ys))
. transpose
H H E L L)) .
. map picChar
HHHHH EEEEE L L) 0 where
H H E L L O O picChar 'A' = [" A ",
H H EEEEE LLLLL LLLLL 000 "AA",
"AAAAA",
"A o AY
Say> ’
ay "A A"]
etc..
21 22
Composition and Reuse: Summary:

.~ (putStr . concat . map say . lines . say) "A"

23

@ Folds on lists have many uses

@ Folds capture a common pattern of
computation on list values

@ In fact, there are similar notions of fold
functions on many other algebraic
datatypes ...)

24

